If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-410=0
a = 1; b = 1; c = -410;
Δ = b2-4ac
Δ = 12-4·1·(-410)
Δ = 1641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1641}}{2*1}=\frac{-1-\sqrt{1641}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1641}}{2*1}=\frac{-1+\sqrt{1641}}{2} $
| C(x)=25x+50 | | 4y-3/y^2+1=4/y | | 3/4w=-6 | | 3+9x+6=6××13+2× | | ((x2-9))/(10)=4 | | 2(p-4)-4=24 | | -14h+12=-17+15h | | -7x+6=6(5-x)+5x | | 21a+28=11a-11+19 | | U=-3x-3 | | 8x-4x=8x | | 7+2x+5=7x+8 | | 2-y/5+2=-8-2 | | -5(1+6k)=8k-5 | | F(n)=2n+8 | | 210+15x=351 | | 2-y/5+2=-8+2 | | x-(12-6)=38 | | 4x2+50x-300=846 | | 31+2n=4(n+7)+3 | | 6u/5=42 | | Y=2.4x | | x+3*4=24 | | 57=11x+2 | | 2(-5r-4)+7(r+1)=-13 | | 2w/w-5-5/w-5=7 | | 49=14x-14-7x | | x*6-7=23 | | -120=10s | | 5(4+3n=n-8 | | 7(3x+8)=21x-9 | | -y+293=225 |